Ongoing or recent research support provided by:

  • National Institutes of Health / National Institute on Deafness and other Communication Disorders
    • R01 DC014443
    • R01 DC016519
  • National Institutes of Health / National Institute on Drug Abuse
    • R01 DA049545
    • R01 DA049449
  • National Institutes of Health / National Institute on Neurological Disorders and Stroke
    • R01 NS117061


Ongoing projects in the lab include:

1. Define the role of the ventral striatum's olfactory tubercle in sensory processing and motivated behaviors. The ventral striatum (VS) is an integrative network of brain structures which 1) processes sensory information and 2) is necessary for motivated behaviors and specifically the rewarding effects of psychostimulants. The olfactory tubercle (OT) subregion of the VS resides in an advantageous position for guiding motivated behaviors since it both receives monosynaptic input from the olfactory bulb, and also has direct interconnectedness with other VS subregions and the basal ganglia.

A major line of research in our lab is to identify manners whereby the OT encodes odor sensory information and how this information then gets distributed throughout interconnected brain structures. We are also interested in defining sources of information into the OT. Work from our group is the first to demonstrate how neurons in the OT encode odor information in behaving subjects, and how these processing strategies are shaped by the learned meaning of the odors (viz., valence). We are now working to identify complementary cellular mechanisms of odor valence.

An additional and related major line of research in our lab is regarding the OT’s role in motivated behaviors. Despite elegant work showing that the OT is needed for both reward behavior and psychostimulant effects on behavior, the OT is not even incorporated into many prevalent models of the brain’s reward system. This omission may in part be explained by a lack of the specific cellular mechanisms whereby the OT impacts reward-guided behavior. Work from our group is the first to demonstrate how neurons in the OT encode goal-directed actions and natural reinforcers and how these are dictated by motivational state. Ongoing work is now resolving important features whereby the OT subserves motivated behaviors and more specifically the reinforcing properties of e-Cigarettes and cocaine. This work is highly relevant to understanding brain mechanisms of addictive behaviors.

2. Define mechanisms whereby the olfactory system is shaped by cognitive state. Cognition shapes sensory processing. Work by numerous groups has shown that olfactory perception and odor processing are both influenced by cognitive factors. The influence of attention, specifically, on the cellular processing of odors is unclear. We recently developed a sophistical behavioral tool to allow for testing important questions regarding the mechanisms whereby selective attention shapes odor coding and the mechanisms thereof. We are interested in 1) defining the circuits at play which afford the brain the capacity to engage in olfactory selective attention and 2) the network properties which occur during selective attention.

Wesson laboratory

at the University of Florida


Dr. Minghong Ma, Univ. of Pennsylvania

Dr. Mariella De Biasi, Univ. of Pennsylvania

Dr. Marc Fuccillo, Univ. of Pennsylvania

Dr. Lori Knackstedt, Univ. of Florida

Dr. Nathalie Mandairon, Univ. of Lyon, France

Dr. Patrik Brundin, Van Andel Institute

Dr. Fuqiang Xu, Chinese Academy of Sciences; Wuhan


Research in our lab explores the neural processing of sensory information in the context of behavior. This line of questioning provides an ideal platform to test specific hypotheses regarding the neural basis of sensory dysfunction in neurological disorders, including dementias and addiction, wherein sensory processing is aberrant. To accomplish these major goals, we utilize a variety of methods ranging from multi-site electrophysiological recordings from defined brain structures to cutting-edge operant behavioral assays, some of which we perform in viral/genetic models with precise neural perturbations.